Diagonalizing cohomogeneity-one Einstein metrics
نویسندگان
چکیده
منابع مشابه
Cohomogeneity One Einstein-sasaki 5-manifolds
We consider hypersurfaces in Einstein-Sasaki 5-manifolds which are tangent to the characteristic vector field. We introduce evolution equations that can be used to reconstruct the 5-dimensional metric from such a hypersurface, analogous to the (nearly) hypo and half-flat evolution equations in higher dimensions. We use these equations to classify Einstein-Sasaki 5-manifolds of cohomogeneity one...
متن کاملCohomogeneity - one Einstein - Weyl structures : a local approach
We analyse in a systematic way the (non-)compact n-dimensional Einstein-Weyl spaces equipped with a cohomogeneity-one metric. In that context, with no compactness hypothesis for the manifold on which lives the Einstein-Weyl structure, we prove that, as soon as the (n-1)-dimensional space is a homogeneous reductive Riemannian space with a unimodular group of left-acting isometries G : • there ex...
متن کاملWarped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملD ec 1 99 9 Cohomogeneity - one Einstein - Weyl structures : a local approach Guy Bonneau
We analyse in a systematic way the (non-)compact n-dimensional Einstein-Weyl spaces equipped with a cohomogeneity-one metric. In that context, with no compactness hypothesis for the manifold on which lives the Einstein-Weyl structure, we prove that, as soon as the (n-1)-dimensional basis space is an homogeneous reductive Riemannian space with an unimodular group of left-acting isometries G : • ...
متن کاملExistence of extremal metrics on almost homogeneous manifolds of cohomogeneity one – IV
This paper is the first of a series of papers in which we generalize our results in (Asian J. of Math. 4, 817–830 (2000); J. Geom. Anal. 12, 63–79 (2002); Intern. J. Math. 14, 259–287 (2003)) to the general complex compact almost homogeneous manifolds of real cohomogeneity one. In this paper we deal with the exceptional case of the G2 action (Cf. Intern. J. Math. 14, 259–287 (2003), p. 285). In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2009
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2009.06.010